

DEPARTMENT OF SPECIAL SERVICES May 21, 2002

John Lovell Pretreatment Coordinator US EPA Region III 1650 Arch Street Philadelphia, PA 19103-2029

RE: Pretreatment Program Local Limits Submission.

NPDES Permit No DE0050547

Dear Mr. Lovell:

Thank you for your letter regarding the New Castle County pretreatment program, in which you found the most recent submittal of the MOT proposed local limits to be acceptable, but you outlined specific comments regarding the proposed local limits and the calculated MAHC/MAHL. The County has reviewed these comments and will address each comment in our response outlined below:

POINT #1 MAHL/MAHC

We understand that future evaluations of the program will be based on the MAHC determined from our most recent local limits submittal. We have reviewed the MAHC calculations and are addressing the MAHC issue in our response to your comments regarding the MOT 2001 annual pretreatment report. To avoid any confusion the County will not integrate the new MAHC's into our program until the new regulations and limits have been approved and implemented.

POINT #2 Removal Rates and Limit Calculations

The DNREC permit limit for lead is 0.15 mg/l, but the County's original calculation for the lead local limit was based on the SDWA criteria of 0.05 mg/l. We now assume that since the receiving stream is not a public water supply that the SDWA criteria will not apply in this case and the facilities DNREC permit limit of 0.15 can be used. With this assumption in mind, and using the DNREC permit limit, we have calculated the local limit and MAHC for lead. As shown on the enclosed sheet, the calculated limit for lead is 26.59 mg/l using the MOT permit limit of 0.15. This translates to a calculated MAHC of 0.872 mg/l. Even though the calculated limit for lead is 26.59 mg/l, the County proposes to set the local limit for lead at 3.0 mg/l and the calculated MAHC of 0.872 mg/l will be based on permit limit criteria.

PHONE: 302-395-5700

John Lovell Pretreatment Program Local Limits Submission. NPDES Permit No DE0050547

POINT #3 Zinc Removal Rates

The County has reviewed the calculations based on the 6% removal rate and we agree that the new data will provide a much lower calculated limit of 7.09 mg/l. The proposed limit for Zinc will remain as previously submitted at 1.00 mg/l. Please refer to the enclosed sheets for our calculations.

POINT #4 Zinc in Alum

The MAHC of 0.2936 mg/l based on 6% removal rate has been confirmed by our calculations. The County intends on using the proposed zinc limit of 1.00 mg/l when the local limits are adopted into the amended pretreatment regulations. Please refer to the enclosed sheets for our calculations. The alum used as the coagulant the MOT phosphorus removal system will continue to be used until a suitable alternative can be found. The County will research alternatives for alum coagulant with lower zinc levels that are suitable for the current coagulation/filtration system design. If a suitable alternative is found and tested in the current system design, the County will contact a vendor to set up use of the new coagulant.

POINT #5 Phosphorus limit

The County will perform a study to determine the actual removal rate of phosphorus through the treatment plant and will also perform testing of the currently permitted industries effluents to determine if these facilities make a significant contribution of phosphorus. The updated data will be used to provide a representative limit for Phosphorus.

POINT #6 Ammonia and Phenolics limits

The County will collect influent and effluent samples for Ammonia and Phenolics for inclusion in the annual report. The data collected will also be used to determine the removal rates for both constituents and then used to determine, if necessary, an updated limit for each constituent.

Point #7 Adoption of regulation into ordinance

The County is proposing to amend the ordinance and the update the Industrial Pretreatment Regulations based on the approved MOT proposed limits as well as the City of Wilmington local limits once they are approved. The approved local limits will be adopted in the ordinance of each municipality in the MOT and City of Wilmington service areas. We understand the EPA can begin the public notice and formal approval process once the updated ordinances have been forwarded to your office.

will plate before alsphir

John Lovell Pretreatment Program Local Limits Submission. NPDES Permit No DE0050547

Should you have any questions or require further information on this matter, please contact David Bowie at (302) 395-5728.

Sincerely,

ames D/Houston

Environmental Compliance Manager

cc:

J. Husband/T. Surles, NCC

K. Branner, Town of Middletown, encl

Peder Hansen, DNREC, encl. David Bowie, NCC, encl.

file:c:\pretreatment\wac\mot\lovelresploclimApril02

MOT PROPOSED LOCAL LIMITS

	CURRENT	PROPOSED
(mg/l)	LIMITS	LIMITS(mg/l)
Al	1.50	NONE
As	1.00 🗸	1.00 -
Ве	0.0070	NONE /
Cd	0.015 /	0.015
CrVI	0.50	0.50
Cr (T)	1.50 -	1.50
Cu	0.15 ✓	1.00 🛴
Cn (T)	0.30	NONE -
FE	NONE /	NONE
Pb	0.50	3.00
Hg	0.001 /	0.001
Мо	NONE /	NONE
Ni	0.02 🗸	1.00 🗸
Se	0.25	NONE /
Ag	0.015	0.015
TI	5.00 🗸	NONE
Zn	1.00	1.00
NH4	35	35 /
TKN	N/A	15
P	N/A	45 🗸
PCB	0.0001	ND /
Phenol	10	10 ~
BOD	350	350
TSS	500	500

NON-DOMESTIC EFFLUENT LIMITS

PAGE 1 OF 2

								STREET LINE TO STREET STREET	STREET, STREET
0.484	0.016	0.5	0.2936	0.276	6.0%	0.206	0.100	1.00	Zinc
							N/A	5.00	Thallium
0.484	0.016	0.5	0.0067	0.001	85.0%	N/A	N/A	0.02	Silver
							N/A	0.25	Selenium
0.484	0.016	0.5	0.2536	0.100	60.6%	0.028	0.071	0.02	Nickel
							0.038	NONE	Molybdenum
0.484	0.016	0.5	0.0002	0.000091	50.0%	0.0001	0.0002	0.001	Mercury
0.484	0.016	0.5	0.8721	0.150	82.8%	0.010	0.058	0.50	Lead
								NONE	Iron
		1					NA	0.30	Cyanide
0.484	0.016	0.5	0.1584	0.046	71.0%	0.018	0.062	0.15	Copper
0.484	0.016	0.5	15.79	4.000	74.7%	0.039	0.154	1.50	Chromium (T)
0.484	0.016	0.5	0.0533	0.016	70.0%		N/A	0.50	Chromium (VI)
0.484	0.016	0.5	0.0133	0.010	25.0%	0.012	0.016	0.16	Cadmium
							N/A	0.007	Beryllium
0.484	0.016	0.5	0.0600	0.050	16.7%	0.001	0.002	1.00	Arsenic
					N/A		N/A	1.50	Aluminum
(MGD)	Flow (MGD)	Flow (MGD)	Conc.(mg/l)	Conc. (mg/L)		(mg/L)	(mg/L)	(mg/l)	
Domestic	Industrial	lotal Influent	Allowable	Allowable Effluent	% Removal	Effluent	Influent	Present Limits	Metal

1997 Data
Underlined values indicate parameter was below detection limit.

NON-DOMESTIC EFFLUENT LIMITS

PAGE 2 OF 2

Metal	Allowable influent Conc. (mg/l)	Allowable Influent Load (lbs/dav)	Domestic Concentration.	Domestic Load (lbs/day)	Allowable Industrial Load (lbs/day)	Allowable Industrial Conc. (mg/l)
Aluminum	N/A					NA
Arsenic	0.060	0.250	0.0250	0.101	0.149	1.12
Beryllium						
Cadmium	0.013	0.056	0.0126	0.051	0.005	0.04
Chromium (VI)	0.053	0.222	0.0000	0.000	0.222	1.67
Chromium (T)	15.795	65.865	0.0590	0.238	65.626	491.80
Copper	0.158	0.661	0.0520	0.210	0.451	3.38
Cyanide						
Iron						
Lead	0.872	3.637	0.0220	0.089	3.548	26.59
Mercury	0.000182	0.001	0.0001	0.000404	0.00036	0.0027
Molybdenum						
Nickel	0.254	1.057	0.1370	0.553	0.504	3.78
Selenium						
Silver	0.007	0.028	0.0050	0.020	0.008	0.057
Thallium						
Zinc	0.294	1.224	0.0690	0.279	0.946	7.09
Numbers checke	Numbers checked per Lovel Feb 22, 2002 letter	2, 2002 letter				
	CALCULATED	CURRENT	PROPOSED			
lead	26.59	0.50	3.00			

	CALCULATED	CURRENT	PROPOSED
Lead	26.59	0.50	3.00
Zinc	7.09	1.00	1.00

DEPARTMENT OF SPECIAL SERVICES February 8, 2002

John Lovell Pretreatment Coordinator US EPA Region III 1650 Arch Street Philadelphia, PA 19103-2029

RE: Pretreatment Program Local Limits Submission.
NPDES Permit No DE0050547

Dear Mr. Lovell:

Thank you for your letter regarding the New Castle County Pretreatment Program Local Limits submission, in which you outlined specific comments regarding the status of the submittal. The County has reviewed these comments and will address each comment in our response outlined below:

POINT #1 Removal Rates for Chromium, Copper and Lead

As requested in your recent response, we have provided in Table D1 the influent and effluent data that was used to calculate the removal rates for metals at the MOT facility including the removal rates for Cr (T), Cu and Pb. The removal rates used to calculate the local limits in the MOT local limit submissions and subsequent responses are listed in Table #2 "History of Local Limits Based on Percent Removal". The 1997 local limit submission data and removal rates in Table #2, with small corrections, represent the correct figures the County should have used in the proposed local limit calculations. Incorrect assumptions (as discussed in earlier correspondence) were made in the selection of the December 1998 and November 1998 removal rates used in the calculations for Cr (T), Cu and Pb. These rates do not represent the actual plant removal efficiencies and will provide local limits that would be too conservative and unnecessarily stringent. After reviewing our January 8, 2001 letter it has been determined that a data transposition error was made and the mean removal efficiencies based on the 1997 influent and effluent data as listed on table D1 should be 74.7% for Cr (T), 71.0 % for Cu and 82.8 % for Pb. Based on the comparison of the data in Table #1, the proposed local limits can be used, and will provide adequate compliance limitations for the industrial permittees.

PHONE: 302-395-5700

POINT #2 Limit Calculations for Chromium, Copper and Lead

Upon further review of previous submissions, and based on your comments, we have reviewed our calculations and find the removal rates for these specific constituents to be correct. As stated previously, incorrect and overly conservative assumptions were made in the 1998 submission and the County feels that using the actual removal rates and the 1998 domestic background data will create local limits that will provide for industrial compliance. The local limit calculations for Cr, Cu & Pb are based on these removal rates and are shown in Table # 3.

- Based on the 74.7 % removal rate, a background of 0.059 mg/l, and the calculated local limit of 491.80 mg/l, the local limit for total chromium will remain at 1.5 mg/l.
- Based on the 71.0 % removal rate, a background of 0.052 mg/l, and the calculated local limit of 3.38 mg/l, the local limit for copper is proposed to be set at 1.0 mg/l.
- Based on the 82.8 % removal rate, a background of 0.022 mg/l, and the calculated local limit of 19.40 mg/l, the local limit for lead is proposed to be set at 3.0 mg/l.

POINT #3 1997 and 1998 Domestic Background data

Using the May 1998 background domestic data and the actual plant removal efficiency data, the County calculated the local limits for Cr, Cu and Pb. Table #2 shows our current calculation and the historic comparison of the local limits calculations using the different data that has been presented in previous submissions. We agree the background data from the 1998 submission used in your calculations are accurate, but still believe the actual mean removal efficiencies should be used in the calculations.

POINT #4 Removal Rates

The local limit calculations submitted in Tables 4 and 5 are based on the actual plant removal data and the 1997 background domestic data.

John Lovell Page 3 0f 3

POINT #5 As, Cd, Hg, Ni, Zn limits

Using the mean removal efficiencies from Table D1 and the 1997 domestic background data from Tables 4 and 5 the local limits for As, Cd, Hg, and Ni are presented below.

- Based on the 16.7 % removal rate, a background of 0.0250 mg/l, and the calculated local limit of 1.12 mg/l, the local limit for arsenic will remain at 1.0 mg/l.
- Based on the 25.0 % removal rate, a background of 0.0126 mg/l, and the calculated local limit of 0.04 mg/l, the local limit for cadmium will remain at 0.015 mg/l.
- Based on the 50.0 % removal rate, a background of 0.0001 mg/l, and the calculated local limit of 0.0027 mg/l, the local limit for mercury will remain at 0.001 mg/l.
- Based on the 60.6 % removal rate, a background of 0.1370 mg/l, and the calculated local limit of 3.78 mg/l, the local limit for nickel is proposed at 1.00 mg/l.
- Based on the 65.0 % removal rate, a background of 0.069 mg/l, and the calculated local limit of 22.56 mg/l, the local limit for zinc is proposed at 1.00 mg/l.

POINT #6 BOD, TSS & Ammonia local limits

BOD, TSS, NH3 limits listed in Table # 6 will be established in the updated Industrial Pretreatment Regulations as proposed and approved.

Should you have any questions or require further information on this matter, please contact David Bowie at (302) 395-5728.

Sincerely

ames D/Houston

Environmental Compliance Manager

cc:

J. Husband/T. Surles, NCC K. Branner, Town of Middletown, encl Peder Hansen, DNREC, encl. David Bowie, NCC, encl.

file:c:\pretreatment\wac\mot\lovelresponseoct01

TABLE D1 MOT WATER FARM ANALYTICAL RESULTS

Influent

Sample Date	As (mg/L)	Cd (mg/L)	Cr (mg/L)	Cu (mg/L)	Hg (mg/L)	Mo (mg/L)	Ni (mg/L)	Pb (mg/L)	Se (mg/L)	Zn (mg/L)
1/8/97	0.002	0.030	0.01	0.04	0.0002	0.021	0.02	0.02	0.002	0.08
1/15/97	0.002	0.024	0.06	0.06	0.0002	0.005	0.01	0.11	0.002	0.05
1/22/97	0.002	0.013	0.04	0.05	0.0002	0.005	0.01	0.20	0.002	0.12
1/28/97	0.002	0.028	0.09	0.07	0.0002	0.005	0.08	0.04	0.002	0.13
4/21/97	0.002	0.020	0.03	0.08	0.0002	0.080	0.04	0.04	0.002	0.11
4/28/97	0.002	0.020	0.78	0.10	0.0002	0.052	0.28	0.04	0.002	0.13
5/7/97	0.002	0.020	0.37	0.10	0.0002	0.032	0.19	0.02	0.002	0.13
5/15/97	0.002	0.020	0.03	0.03	0.0002	0.065	0.04	0.02	0.002	0.08
5/23/97	0.002	0.020	0.03	0.03	0.0002	0.032	0.04	0.03	0.002	0.07
10/13/97						0.021				0.127
10/14/97						0.066				0.114
10/15/97						0.055				0.126
10/16/97						0.061				0.143
10/17/97						0.034				0.084
Average	0.0012	0.016	0.154	0.062	0.0002	0.038	0.071	0.058	0.001	0.11

Effluent

Sample Date	As (mg/L)	Cd (mg/L)	Cr (mg/L)	Cu (mg/L)	Hg (mg/L)	Mo (mg/L)	Ni (mg/L)	Pb (mg/L)	Se (mg/L)	Zn (mg/L)
11/13/96		0.02		0.04			0.07			0.25
4/21/97	0.002	0.02	0.07	0.02	0.0002	0.039	0.04	0.02	0.002	0.36
4/28/97	0.002	0.02	0.08	0.02	0.0002	0.032	0.04	0.02	0.002	0.34
5/7/97	0.002	0.02	0.03	0.01	0.0004	0.067	0.04	0.02	0.002	0.03
5/15/97	0.002	0.02	0.03	0.01	0.0002	0.035	0.04	0.02	0.002	0.26
5/23/97	0.002	0.02	0.03	0.02	0.0002	0.019	0.04	0.02	0.002	0.04
10/13/97						0.061				0.02
10/14/97						0.04				0.47
10/15/97			1/1			0.055				0.39
10/16/97						0.04				0.45
10/17/97						0.055				0.45
Average	0.001	0.012	0.039	0.018	0.00010	0.044	0.028	0.01	0.001	0.2791

Note: The underlined values indicate the parameter was less than the detection limit.

In accordance with EPA guidelines one-half of the underlined value was used in calculating the average.

Mean Removal Efficiencies (%)

As	Cd	Cr-T	Cu	Hg	Мо	Ni	Pb	Se	Zn
16.7	25	74.7	71.0	50	-16.1	60.6	82.8	0	-161.5

1991 EPA Literature

38

65

58

19

65

MOT PROPOSED LOCAL LIMITS

	CURRENT	PROPOSED
(mg/l)	LIMITS	LIMITS(mg/l)
Al	1.50	NONE
As	1.00	1.00
Be	0.0070	NONE
Cd	0.015	0.015
CrVI	0.50	0.50
Cr (T)	1.50	1.50
Cu	0.15	1.00
Cn (T)	0.30	NONE
FE	NONE	NONE
Pb	0.50	3.00
Hg	0.001	0.001
Мо	NONE	NONE
Ni	0.02	1.00
Se	0.25	NONE
Ag	0.015	0.015
TI	5.00	NONE
Zn	1.00	1.00
NH4	35	35
TKN	N/A	15
Р	N/A	45
PCB	0.0001	<u>ND</u>
Phenol	10	10
BOD	350	350
TSS	500	500

TABLE # 2

LOCAL LIMITS, BACKGROUND DATA AND PERCENT REMOVAL SUMMARY Oct-97

	% Removal			CALCULATE	D	MOT
(mg/l)	As Submitted 1997 Table	Actual % Removal	Domestic Background	LOCAL LIMIT mg/l	PROPOSED LIMIT	CURRENT LIMIT
Cr, T	70	70	0.013	416.27	1.5	1.50
Cu,T	74	74.2	0.081	3.12	3.0	0.15
Pb,T	65	65.4	0.01	4.21	4.0	0.50

May-97

Nov-98

		1404-00				
344	% Removal	11 13 13 13 11	C	ALCULATE	D	MOT
(mg/l)	As Submitted 1998 Table E1	Assumed % Removal	Domestic Background	LOCAL LIMIT	PROPOSED LIMIT	CURRENT LIMIT
Cr, T	35.5	35.5	0.059	162.94	1.5	1.50
Cu,T	41	41	0.052	0.55	0.5	0.15
Pb,T	28.5	28.5	0.022	1.19	1.15	0.50

May-98

Dec-98

	% Removal		C	ALCULATE	D	MOT
(mg/l)	As Submitted 1998 Table E1	Assumed % Removal	Domestic Background	LOCAL	PROPOSED LIMIT	CURRENT LIMIT
Cr, T	35.5	35.5	0.059	162.94	1.5	1.50
Cu,T	41	41	0.052	0.498	0.5	0.15
Pb,T	28.5	28.5	0.022	1.192	1.15	0.50

May-98

Jan-01

% Removal					to the second of a visit of the second of
70 1101110101		C	ALCULATE	D	MOT
As Submitted 2001 Table #4	Actual % Removal	Domestic Background	LOCAL	PROPOSED LIMIT	CURRENT LIMIT
74.7	74.7	0.005	493.4	1.5	1.50
71	71	0.066	3.0	3.0	0.15
83.3	83.3	0.009	19.8	4.0	0.50
0.0000000000000000000000000000000000000	74.7 71	2001 Table #4 % Removal 74.7 74.7 71 71	74.7 74.7 0.005 71 71 0.066 83.3 83.3 0.009	2001 Table #4 % Removal Background LIMIT 74.7 74.7 0.005 493.4 71 71 0.066 3.0 83.3 83.3 0.009 19.8	2001 Table #4 % Removal Background LIMIT LIMIT 74.7 74.7 0.005 493.4 1.5 71 71 0.066 3.0 3.0 83.3 83.3 0.009 19.8 4.0

1997 1997

Feb-01 CURRENT CALCULATION

200	% Removal		C	ALCULATE	D	MOT
(mg/l)	As Submitted 2001 Table #4	Actual % Removal	Domestic Background	LOCAL LIMIT	PROPOSED LIMIT	CURRENT LIMIT
Cr, T	74.7	74.7	0.059	491.8	1.5	1.50
Cu,T	71	71	0.052	3.4	3.0	0.15
Pb,T	82.8	82.8	0.022	8.37	3.0	0.50

1997 May-98

TABLE # 3 NON-DOMESTIC EFFLUENT LIMITS

		uniter group to the first state of the state							
Metal	Limits	Influent	Effluent	% Removal	Allowable	Allowable	Total	Industrial	Domestic
	(l/gm)	(mg/L)	(ma/L)		Conc. (ma/1)	C	Flow (MGD)	Flow (MGP)	MOL
Chromina ////	CL	*****		1000	13/8::::	(S)	ומסואון אסוי	(ODINI) MOL	(מפואו)
CIII OI III (VI)	0.50	N/A		*20%	0.016	0.02	0.5	0.016	0.484
Chromium (T)	1.50	0.154	0.039			15 70		0.00	1000
			000			10.73	0.0	0.016	0.484
Copper	0.15	0.062	0.018	71.0%	0.046	0.16	0.5	0.016	787 0
Deal	0 80	00300	0,00	100 00				0.0	101.0
רכמת	0.30	0.0000	0.010	87.8%	0.050	0.29	0.5	0.016	0 484
						CACAMADING WASHINGTON			

ш
TURE
n
\vdash
LITERA
8
ш
_
A
2
H
O
5
Щ
9
*BASED
뀌
Τl

	Allowable	Allowable	Domestic	Domestic	Allowable	Allowable
Metal	Influent Conc	Influent Load	Influent Load Concentration.	Load	Industrial	Industrial
	(I/gm)	(lbs/day)	(mg/l)	(lbs/dav)	Load (lbs/day) Conc (mg/l	Conc (ma/l
Chromium (VI)	0.02	0.07	0.0020	0.0081	0.06	0.44
Chromium (T)	15.79	65.86	0.0590	0.2382	65.63	491.80
Copper	0.16	0.66	0.0520	0.2099	0.45	23.00
Lead	0.29	1.21	0.0220	0.0888	1.12	8 40

Present	Proposed
Limits	Limits
(I/gm)	(mg/l)
0.50	0.50
1.50	1.50
0.15	1.00
0.50	3.00

NON-DOMESTIC EFFLUENT LIMITS

PAGE 1 OF 2

					COMMENTAL PROPERTY OF THE PROP			1011	-
	Present				Allowable	Allowable	Total	Industrial	Domestic
Metal	Limits	Influent	Effluent	% Removal	Effluent	Influent	Influent	Influent	Flow
	(mg/l)	(mg/L)	(mg/L)		Conc. (mg/L)	Conc.(mg/l)	Flow (MGD)	Flow (MGD)	(MGD)
Aluminum	1.50	NA		N/A					
Arsenic	1.00	0.002	0.001	16.7%	0.050	0.0600	0.5	0.016	0.484
Beryllium	0.007	N/A							
Cadmium	0.16	0.016	0.012	25.0%	0.010	0.0133	0.5	0.016	0.484
Chromium (VI)	0.50	N/A		%0.07	0.016	0.0533	0.5	0.016	0.484
Chromium (T)	1.50	0.154	0.039	74.7%	4.000	15.79	0.5	0.016	0.484
Copper	0.15	0.062	0.018	71.0%	0.046	0.1584	0.5	0.016	0.484
Cyanide	0:30	N/A							
Iron	NONE								
Lead	0.50	0.058	0.010	82.8%	0.050	0.2907	0.5	0.016	0.484
Mercury	0.001	0.0002	0.0001	20.0%	0.000091	0.0002	0.5	0.016	0.484
Molybdenum	NONE	0.038							
Nickel	0.02	0.071	0.028	%9.09	0.100	0.2536	0.5	0.016	0.484
Selenium	0.25	N/A							
Silver	0.02	AN	N/A	%0.28 \	0.001	0.0067	0.5	0.016	0.484
Thallium	2.00	N/A							
Zinc	1.00	0.100	0.206	%0.59	0.276	0.7886	0.5	0.016	0.484
				+ 20					

1997 Data

 $\overline{\text{EPA }\%^*}$ * The county will use EPA data for the zinc local limit calculation Underlined values indicate parameter was below detection limit.

TABLE # 5

NON-DOMESTIC EFFLUENT LIMITS

		(1)	 N/A	12		4(37	200	38		-	12	27		28		22		99	
Allowable	Industrial	Conc. (mg/l)	Z	1.12		0.04	1.67	491.80	3.38			8.42	0.0027		3.78		0.057		22.56	
Allowable	Industrial	Load (lbs/day)		0.149		0.005	0.222	65.626	0.451			1.123	0.00036		0.504		0.008		3.010	
Domestic	Load	(0.101		0.051	0.000	0.238	0.210			0.089	0.000404		0.553		0.020		0.279	
Domestic	Concentration.	(l/gm)		0.0250		0.0126	0.0000	0.0590	0.0520			0.0220	0.0001		0.1370		00000		0690'0	
Allowable	pg	(lbs/day)		0.250		0.056	0.222	65.865	0.661			1.212	0.001		1.057		0.028		3.288	
Allowable	Influent Conc.	(mg/l)	N/A	090'0		0.013	0.053	15.795	0.158			0.291	0.000182		0.254		0.007		0.789	
	Metal		Aluminum	Arsenic	Beryllium	Cadmium	Chromium (VI)	Chromium (T)	Copper	Cyanide	lron	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Zinc	

TABLE # 6

ADLL # 0

CONVENTIONAL POLLUTANT LOADING

	MOT DESIG REPORT PL	MOT DESIGN & DEVELOPMENT REPORT PLANT LOADING	MENT	MOT AVE
	DESIGN	DESIGN		INFLUE
	mg/l	пдл		l/gm
NH3	18.1		NH3	
TKN	40		TKN	14.51
BOD	231	16	BOD	136
۵	9		<u>α</u>	11.2
TSS	342	30	TSS	110

PERMIT MAHC 208 11 250 250 I/Bu 1.0 / 0.5 23 / 15 max / ave EFFLUENT 3.6 / 2.5 13/8.3 PERMIT ∏gш EFFICIENCY REMOVAL ERAGE PLANT LOADING % 96 94 EFFLUENT 0.85 mg/l 2

174 865 46 7/ 1043

PERMIT

MAHL Ibs/day

MAHC= Maximum Allowable Headworks Concentration

MAHC is based on the average permit limit

L 12 (IND) INFLUENT DOMESTIC DOI FLOW FLOW (MGD) (MGD) (MGD)	STIC PERMIT NG MAHL ay lbs/day	LOADING REMAINING Ibs/day	1.2 (IND) FLOW	INITISTICIN		111111111111111111111111111111111111111
(MGD) (MGD) mg/l		lbs/day		Concentration	CURRENI LOCAL LIMIT	LOCAL LIMIT
Or CARRY COMMISSION CO		THE RESERVE AND DESCRIPTIONS OF THE PERSON NAMED IN	(MGD)	l/gm	Ngm	ПgM
07 07170				35	35	35
10235 0.05 0.5 0.47 8 0.00	174	7	0.0282	30	n/a	15
0.0282 0.5 0.4718 173		145	0.0282	615	350	350
0.0282 0.5	794	3 21	0.0282	91	e/u	45
0.0282 0.5	1 1043	271	0.0282	1152	200	200

1.2 IND FLOW IS A FACTOR USED TO ANTICIPATE INDUSTRIAL GROWTH

EFFLUENT FILTERS ARE FACTORED IN REMOVAL EFFICIENCY

DEPARTMENT OF SPECIAL SERVICES

June 20, 2001

John Lovell Pretreatment Coordinator US EPA Region III 1650 Arch Street Philadelphia, PA 19103-2029

RE: MOT Zinc Levels

NPDES Permit No DE0050547

Dear Mr. Lovell:

As previously discussed, we have completed the zinc analysis on the influent and effluent of the treatment plant. In addition, we performed zinc analysis on the spray effluent samples that are collected prior to chemical addition. Our study on the influent, effluent, and spray effluent was conducted from April to December 2000.

The enclosed data indicates the alum used for coagulation in the filtration process is a significant source of zinc. The typical removal efficiency at the lagoon #3 effluent prior to the alum addition exceeds 90 %. As the zinc is being contributed by a facility process, the local limits used to control industrial contributions will be determined using the plant removal efficiency prior to filtration. Please refer to Table #1 for the Zinc local limit calculation.

Based on the enclosed calculations and the current industrial zinc contributions, we propose to retain the zinc local limit at the current level.

We will check with our chemical supplier to determine if they can provide a higher quality liquid Alum that may possibly contain lower concentrations of zinc.

Should you have any questions or require further information on this matter, please contact David Bowie at (302) 395-5728.

Sincerely,

ames D. Høuston

Environmental Compliance Manager

cc: Jonathan Husband/Tracey Surles/ encl, File

K. Branner, Town of Middletown, encl

Peder Hansen, DNREC, encl.

file:c:\pretreatment\wac\mot\LOVELZINC01

	ZINC added by filter process flas	0.094	0.061			0.022		0.196		0 083
	Filter a Effluent III	0.130	0.094			0.081	0.255	0.207	0.124	0.203
	Average Filter Effluent mgfl	0.082	0.094			0.079	0.073	0.052	0.030	0.051
	Average Filler Effluent MGD	0.190	0.120			0.123	0.420	0.480	0.490	0.480
	% Removat	93	83	95		-25		4		05
	lagoon #3 Effluent to spray lbs	0.036	0.034	0.019		0.058		0.011		0.032
ALANCE	Efflient Conc. mg/l	0.005	0.006	0.006		0.008		0.002		9000
ZINC MASS BALANCE	Effluent Effluent to spray Conc. MGD mgil	0.863	9.676	0.387		0.875		0.664		
IZ	influent loading lhs	0.502	0.492	0.372	0.928	0.047	0.529	0.011	0.122	0.300
	Average Influent Conc. mg/l	0.097	0.104	0.088	0.214	0.010	0.073	0.002	0.034	0.075
	Average Influent Flow MGD	0.620	0.570	0.510	0.520	0.560	0.870	0.570	0.430	0.480
	Month	Apr-00	May-00	Jun-00	Jul-00	Aug-00	Sep-00	Oct-00	Nov-00	Dec-00

Mot	Weekly Zi	nc Analys	is
	Influent and		
		Stream	** * * * * * * * * * * * * * * * * * * *
	influent	Effluent	Mot Spray Eff.
Date	mg/l	mg/l	mg/l
5-Apr-00	0.113	0.021	0.005
12-Apr-00	0.113	0.105	0.005
19-Apr-00	0.052	0.092	
26-Apr-00	0.110	0.111	
3-May-00	0.111	0.102	0.006
10-May-00	0.111	0.089	0.006
17-May-00	0.093	0.108	
24-May-00	0.102	0.077	
31-May-00	0.101	0.096	
7-Jun-00	0.080	0.170	
14-Jun-00	0.080	0.080	
21-Jun-00	0.100	NO FLOW	
28-Jun-00	0.090	NO FLOW	
5-Jul-00	0.280	NO FLOW	
12-Jul-00	0.152	NO FLOW	
19-Jul-00	0.451	NO FLOW	0.008
26-Jul-00	0.214	NO FLOW	
2-Aug-00	0.013	NO FLOW	
9-Aug-00	0.011	NO FLOW	
16-Aug-00	0.012	0.060	
23-Aug-00	0.013	0.095	
30-Aug-00	0.010	0.081	
6-Sep-00	0.003	0.021	
13-Sep-00	0.017	0.118	0.569
20-Sep-00	0.023	0.083	
27-Sep-00	0.093	0.052	
4-Oct-00	0.002	0.054	0.018
11-Oct-00	0.003	0.051	
18-Oct-00	0.002	0.053	0.002
25-Oct-00	0.002	0.049	
2-Nov-00	0.045	0.031	
8-Nov-00	0.021	0.002	0.002
15-Nov-00	0.014	0.025	
22-Nov-00	0.056	0.063	
6-Dec-00	0.007	0.053	
13-Dec-00	0.018	0.037	
20-Dec-00	0.043	0.068	
27-Dec-00	0.075	0.045	
AVE	0.075	0.070	0.087

.

COAGULA PLANT EFF Month	IC REMOVATION/FILTR LUENT STF ly Average offuent El	ATION INC	LUDED
Apr-00	0.097	0.082	15
May-00	0.104	0.094	9
Jun-00	0.088		
Jul-00	0.274		
Aug-00	0.012	0.079	-567
Sep-00	0.034	0.073	-114
Oct-00	0.002	0.052	-2200
Nov-00	0.034	0.030	11
Dec-00	0.036 <u>0.076</u>	0.051 <u>0.066</u>	-42 <u>13</u>

MOT 2000 ZINC LIMIT CALCULATION

Domestic Flow (MGD)	0.484		
Industrial Influent Flow (MGD)	0.016		
Total Influent Flow (MGD)	0.5	PROPOSED Limit (mg/l)	1.00
Allowable Influent Conc.(mg/l)	1.9320 0.594	Allowable Industrial Conc. (mg/l)	57.05
Allowable Effluent Conc. (mg/L)	0.276	Allowable Industrial Load (Ibs/day)	7.612
% Removal	185.7%	Domestic Load (lbs/day)	0.444
Effluent (mg/L)	0.054	Domestic Concentration. (mg/l)	0.1100
Influent (mg/L)	0.378	Allowable Influent Load (Ibs/day)	8:056
Present Limit (mg/l)	1.00	Allowable Influent Conc (mg/l)	1.932
Metal	Zinc		- Limited

DEPARTMENT OF SPECIAL SERVICES January 8, 2001

John Lovell Pretreatment Coordinator US EPA Region III 1650 Arch Street Philadelphia, PA 19103-2029

RE: Pretreatment Program Local Limits Submission. NPDES Permit No DE0050547

Dear Mr. Lovell:

Thank you for your letter regarding the New Castle County pretreatment program, in which you outlined specific comments regarding the status of the program. The County has reviewed these comments and will address each comment in our response outlined below:

Pollutants of Concern

To support the continued absence of a cyanide limit the County will sample the effluent from all industrial permittees at least annually to ensure that the industrial dischargers do not generate cyanide.

Sludge Disposal

As stated in your July 3, 2000 letter, the use of land application sludge standards is not required at this time and the MAHCs are based on effluent and inhibition criteria.

Removal Rates

Chromium, Copper and Lead:

As suggested in your letter we have reevaluated the removal rates for Cr, Cu and Pb in terms of long-range enforcement and decided to calculate the local limits based on the actual plant removal efficiencies. Please refer to Table #2 "Local Limits Based on Percent Removal" table for a comparison of the different MOT removal rates for Cr, Cu and Pb and refer to Table #3 "History of Proposed Local Limits" for historic limit proposals.

Tables #5 & #6 "INDUSTRIAL SAMPLING DATA" show the seven-year SMR data average compared to the current local limits and the 1997 and 1998 proposed local limits. Based on the comparison of the data, the limits proposed in the 1997 submittal can be used and will provide compliance limitations for the industrial permittees.

PHONE: 302-395-5700

Zinc

As discussed in our April 20, 2000 letter, we are currently conducting zinc analysis on the influent and effluent to the plant. In addition, we are performing zinc analysis on the spray effluent samples that are collected prior to chemical addition. The initial data indicates the alum used for chemical addition is a significant source of zinc in the effluent. Tests on the alum solution show zinc to be present at 1.2 mg/l. Our study on the influent, effluent, and spray effluent was started on April 5th and continued until June 14th of 2000. After June 14th, 2000, zinc analysis was performed on the influent and spray effluent only, due to the temporary reduction of the stream discharge caused by restrictive seasonal TMDL's. Presently, we have 2 ½ months of data collected and will continue our analysis for another 3 ½ months after the restart of stream discharge. At the conclusion, we will submit the data that will compare the filtered effluent to the unfiltered effluent and we will use the data to determine the actual zinc removal efficiencies. This data will be used to calculate the MAHC for zinc using effluent criteria. Meanwhile, we are proposing to retain the Zinc limit at the current level.

PCB's

A no discharge limitation for PCB's is proposed as the local limit.

Ammonia, BOD, TSS

The proposed local limitations for these parameters are based on the design loading of the plant and the maximum permitted effluent limitation as shown on Table #7 "Conventional Pollutant Loadings" and # 8 "Historic Industrial BOD and TSS Loadings". The industrial flow and loading contributions were calculated and the remaining plant design flow was used to determine the amount the industries could load the facility based on the plant removal efficiencies and the plant permit limits. As the proposed local limits are lower than the calculated MAHCs this should provide an adequate safety factor to prevent industrial contributions from causing process upset or pass through. The limitation on Ammonia is based on engineering judgement relative to sewer worker's safety considerations.

CODE ADOPTION

The attached draft revision to NCC Code has been submitted to our law department for approval. Assuming that these proposed revisions are approved by the EPA by March, 2001, we expect to adopt the revised limits by May 30, 2001. The Mayor and Council of Middletown generally adopts revisions to their Pretreatment Program by referencing the revised NCC Code.

John Lovell Page 3 0f 3

Should you have any questions or require further information on this matter, please contact David Bowie at (302) 395-5728.

James D. Houston

Environmental Compliance Manager

David Hofer, NCC cc: Tracey Surles, NCC

K. Branner, Town of Middletown, encl

Peder Hansen, DNREC, encl.

David Bowie, NCC, encl.

file:c:\pretreatment\wac\mot\lovelresponse

TABLE # 1

MOT PROPOSED LOCAL LIMITS

	CURRENT	PROPOSED	,998	1997
(mg/l)	LIMITS	LIMITS		
Al	1.50	N/A		2 0
As	1.00	(1.00)	0.83	3,0
Be	0.0070	N/A		a) _
Cd	0.015	0.5	0.01	0,5
Cr (T)	1.50	1.50	1.5	1.5
CrVI	0.50	0.50		0.5
Cu	0.15	3.00	015	3
Pb	0.50	4.00	1.15	4
Hg	0.001	0.001	0.0002	.0025
Мо	none	N/A	52	
Ni	0.02	(10)	0.25	10
Se	0.25	N/A		
Ag	0.015	0.015	0.035	0.015
TI	5.00	N/A		
Zn	1.00	1.00	0.7	0.85
NH4	35.00	35.00	35	35
Cn-, tot	0.30	N/A		
PCB	0.0001	<u>ND</u>	0	
Phenol	10.00	10.00		10
BOD	350	350	350 500	500
TSS	500	500	500	500

LOCAL LIMITS BASED ON PERCENT REMOVAL

1997

(mg/l)	% Removal As Submitted 1997 Table	PRELIM % Removal	PRELIM LIMIT	PROPOSED LIMITS	MOT CURRENT LIMITS
Cr, T	70	70	416	1.5	1.50
Cu,T	74	74	3.12	3.0	0.15
Pb,T	65	65	4.21	4.0	0.50

1998

(mg/l)	% Removal As Submitted 1998 Table E1	PRELIM % Removal	PRELIM LIMIT	PROPOSED LIMITS	MOT CURRENT LIMITS
Cr, T	35.5	35.5	162.94	1.5	1.50
Cu,T	41	41	0.498	0.5	0.15
Pb,T	28.5	28.5	1.192	1.15	0.50

TABLE#3

U.)	
2		
_	ı	
_	į	
S		
۲	′	
_	1	
_		
뉴	1	
d	i	
Č	Ś	
ă	_	
C)	
0	_	
Ω	•	
Ц	_	
C)	
>	-	
0	_	
C)	
H	-	
<u>U</u>	2	
I	_	

MOT CURRENT	1.50	1.00	0.0070	0.015	1.50	0.50	0.15	0.50	0.001	none	0.02	0.25	0.015	2.00	1.00	35.00	0.30	0.0001	10.00	350	200
	(mg/l)	As	Be	g	Cr (T)	CrVI	Cn	Pb	Hg	Mo	Z	Se	Ag	L	uZ	NH4	Cn-, tot	PCB	Phenol	BOD	TSS

																							_
Oct-97	PRELIM		N/A	3.110	0.250	0.530	416	1.67	3.120	4.210	0.0028	0.200	10.170	0.350	0.003	0.110	0.860	N/A	0.320	0.170	N/A	N/A	N/A
Oct-97	PROPOSED	LIMIIS	N/A	က	0.2	0.5	1.5	0.5	3	4	0.0025	0.2	10	0.35	0.015	0.1	0.85	35	0.3	N/A	10	200	200

1998	PRELIM		N/A	0.830	N/A	0.000	162.94	0.508	0.500	1.190	0.0002	N/A	0.280	N/A	0.038	N/A	0.716	N/A	N/A	N/A	N/A	N/A	N/A
1998	PROPOSED	LIMITS	N/A	0.800	N/A	0.010	1.500	N/A	0.500	1.150	0.0002	N/A	0.250	N/A	0.035	N/A	0.700	35	N/A	0.000	N/A	320	200

TABLE # 4
1997 NON-DOMESTIC EFFLUENT LIMITS

	Present				Allowable	Allowable	Total	Industrial	Domestic
Metal	Limits	Influent	Effluent	% Removal	Effluent	Influent	Influent	Influent	Flow
京	(mg/l)	(mg/L)	(mg/L)		Conc. (mg/L)	Conc.(mg/l)	Flow (MGD)	Flow (MGD)	(MGD)
Chromium (VI)	0.50	A/N		20.0%	0.016	0.0533	0.5	0.016	0.484
Chromium (T)	1.50	0.154	0.039	74.7%	4.000	15.7949	0.5	0.016	
Copper	0.15	0.062	0.018	71.0%	0.046	0.1584	0.5	0.016	0.484
Lead	0.50	090.0	0.010	83.3%	0.107	0.6420	0.5	0.016	0.484

EPA %

	Allowable	Allowable	Domestic	Domestic	Allowable	Allowable
Metal	Influent Conc.	Influent Load	Concentration.	Load	Industrial	Industrial
	(mg/l)	(lbs/day)	(l/gm)	(lbs/day)	Load (lbs/day)	Conc. (mg/l)
Chromium (VI)	0.0533	0.2224	0.0020	0.0081	0.2143	1.6
Chromium (T)	15.7949	65.8646	0.0050	0.0202	65.84	493.4
Copper	0.1584	0.6607	0.0660	0.2664	0.3943	3.0
Lead	0.6420	2.6771	0600'0	0.0363	2.6408	19.8

 Present
 Proposed

 Limits
 Limits

 (mg/l)
 (mg/l)

 0.50
 0.50

 1.50
 1.50

 0.15
 3.00

 0.50
 4.00

1/4/01

file:c:pretreatment\wac\MOT\locallimit\metals |

INDUSTRIAL SMR DATA

JOHNSON CONTROLS,INC

	MOT CURRENT	PROPOSED	SAMP	LING DATA	
(mg/l)	LIMITS	LIMITS	1997	1998	1999
Al	1.50	N/A			
As	1.00	1.00	0.002	0.005	0.002
Be	0.0070	N/A			
Cd	0.015	0.5	0.007	0.005	0.004
Cr (T)	1.50	1.50	0.008	0.011	0.008
CrVI	0.50	0.50			
Cu	0.15	3.00	0.004	0.0415	0.088
Pb	0.50	4.00	0.522	0.576	0.846
Hg	0.001	0.001	0.0002	0.0002	0.0003
Мо	none	N/A	0.682	0.132	0.075
Ni	0.02	1.00	0.031	0.059	0.045
Se	0.25	N/A	0.003	0.004	0.002
Ag	0.015	0.015			
TI	5.00	N/A			
Zn	1.00	1.00	0.021	0.026	0.011
NH4	35	35			
Cn-, tot	0.30	N/A			
PCB	0.0001	<u>ND</u>			
Phenol	10	10			
BOD	350	350	81	60	77
TSS	500	500	17	12	15

INDUSTRIAL SMR DATA

MACDERMID IMAGING, INC

	MOT	PROPOSED	SAMP	LING DATA	(
(mg/l)	LIMITS	LIMITS	1997	1998	1999
AI	1.50	N/A			
As	1.00	1.00	0.0063	0.0022	0.005
Be	0.0070	N/A			
Cd	0.015	0.5	0.0063	0.0022	0.004
Cr (T)	1.50	1.50	0.0187	0.0059	0.005
CrVI	0.50	0.50			
Cu	0.15	3.00	0.031	0.0253	0.02
Pb	0.50	4.00	0.028	0.0154	0.0145
Hg	0.001	0.001	0.0002	0.00013	0.0005
Мо	none	N/A	0.031	0.008	0.05
Ni	0.02	1.00	0.031	0.0065	0.02
Se	0.25	N/A	0.0015	0.0027	0.005
Ag	0.015	0.015		1	
TI	5.00	N/A			
Zn	1.00	1.00	0.263	0.414	0.34
NH4	35	35			
Cn-, tot	0.30	N/A			
PCB	0.0001	<u>ND</u>			
Phenol	10	10			
BOD	350	350	116	1038	371
TSS	500	500	6	210	32

CONVENTIONAL POLLUTANT LOADING

	T	T		-
MOT DESIGN & DEVELOPMENT REPORT PLANT LOADING DESIGN DESIGN INFLUENT Mg/l A8 4	40	231	9	0.0

	MOI AVERA	MOI AVERAGE PLANI LOADING	LOADING			
			REMOVAL	PERMIT	PERMIT	PERMIT
	INFLUENT	EFFLUENT	EFFICIENCY	EFFLUENT	MAHC	MAHL
	//gw	l/gm	%	l/gm	l/gm	lbs/day
TKN TKN	14.51	0.85	94	3.6 / 2.5	42	174
BOD	136	2	96	13 / 8.3	208	865
	11.2	-	91	1.0 / 0.5	11	46
TSS	110	7	94	23 / 15	250	1043

MAHC= Maximum Allowable Headworks Concentration

max / ave

MAHC is based on the average permit limit

lax se	MOT LIMIT	NOT LIMIT CALCULATION	NOIL					PLANT		Maximum		
(#)	NDUSTRIAL	1.2 (IND)	INFLUENT	DOMESTIC	DOMESTIC	DOMESTIC	PERMIT	LOADING	1.2 (IND)	INDUSTRIAL	CURRENT	PROPOSED
owniki)	FLOW	FLOW	FLOW	FLOW	Concentration	Loading	MAHIL	REMAINING	FLOW	Concentration	LOCAL LIMIT	LOCAL LIMIT
	(MGD)	(MGD)	(MGD)	(MGD)	l/gm	lbs/day	lbs/day	lbs/day	(MGD)	l/gm	l/gm	l/gm
LH3										35	35	35
TKN	0.0235	0.0282	0.5	0.4718	40	167	174	7	0.0282	30	n/a	15
300	0.0235	0.0282	0.5	0.4718	173	721	865	145	0.0282	615	350	350
<u> </u>	0.0235	0.0282	0.5	0.4718	9	25	46	21	0.0282	91	n/a	45
LSS	0.0235	0.0282	0.5	0.4718	185	771	1043	271	0.0282	1152	200	200

1.2 IND FLOW IS A FACTOR USED TO ANTICIPATE INDUSTRIAL GROWTH

EFFLUENT FILTERS ARE FACTORED IN REMOVAL EFFICIENCY

HISTORIC INDUSTRIAL BOD AND TSS LOADING (mg/l)

MACDERMI	D M-85-02	
YEAR	BOD	TSS
1994 NCC	1045	30
1994 NCC	898	105
1994 NCC	525	104
1996 NCC	152	24
1996 NCC	46	51
1996 NCC	393	26
1997 NCC	116	6
1998 NCC	1038	210
2000 NCC	565	81
AVE	531	71

JOHNSON (CONTROL	_S M-85-01
YEAR	BOD	TSS
1994 NCC	140	16
1994 NCC	23	6
1994 NCC	64	30
1994 NCC	45	18
1996 NCC	1	20
1996 NCC	112	50
1996 NCC	170	3
1996 NCC	52	4
1996 NCC	39	10
1997 NCC	53	13
1997 NCC	109	21
AVE	73	17

DRAFT

SUGGESTED PREAMBLE

Introduced by:

ORDINANCE NO. 01-

TO AMEND CHAPTER 38 OF THE NEW CASTLE COUNTY CODE RELATING TO THE REGULATION OF NON-DOMESTIC WASTWATER DISCHARGERS

WHEREAS, New Castle County owns and operates wastewater treatment facilities; and

WHEREAS, New Castle County has an approved industrial pretreatment program pursuant to conditions contained in National Pollutant Discharge Elimination System Permit No. DE0050547, issued by the State of Delaware; and

WHEREAS, Federal regulations governing industrial pretreatment programs, 40 CFR Parts 125 and 403, specifically mandate minimum local legal authority in order to enforce the requirements of the County□s industrial pretreatment program; and

WHEREAS, New Castle County has established local discharge limits on pollutants dicharged onto the Middletown-Odessa-Townsend (MOT) Service Area at NCC CODE Section 38.02.03

WHEREAS, The local discharge limits are required to be revised periodically pursuant to 40 CFR parts 125 and 403 and the U. S. Environmental Protection Agency has conceptually approved the revisions proposed by NCC Department of Special Services.

WHEREAS, the following revisions are proposed in order to bring the New Castle County Code into compliance with federal regulations.

THE COUNCIL OF THE COUNTY OF NEW CASTLE HEREBY ORDAINS:

Section 1. The County of New Castle is revising Chapter 38, Article II, Division 8 of the New Castle County Code by deleting the matter within brackets, and adding the matter underlined in Exhibit $\Box A \Box$.

Section 2. This Ordinance shall become effective immediately upon its adoption.

Approved as to form	President
	County Executive
SYNOPSIS: The amendment relates to reporting details in the implementation of the County's exist	requirements, discharge permit conditions, and technical ting industrial pretreatment program.

FISCAL IMPACT: The technical revisions to NCC code will have no fiscal impact on the County and no known fiscal impact on the industrial users

EXHIBIT A

Chapter 38 of the New Castle County Code

REGULATIONS ON NON-DOMESTIC WASTEWATER DISCHARGES INTO THE PUBLIC SEWER SYSTEM

Sec. 38.02.703 Maximum constituents.

(a) *Limitations of concentrations*. The concentration in wastewater of any of the following constituents shall be limited to the following (See also Sec. 38-269):

INDUSTRIAL POINT SOURCE

INDUSTRIAL PO	INI SOURCE
In MOT Service Area	In Wilmington Service Area
30-DAY AVERAGE	30-DAY AVERAGE
(mg/l)	(mg/l)
1.50	·-]
1.00	0.24
0.007	-]
[0.15] <u>0.50</u>	2.00
1.50	4.00
0.50	<u>.</u>
[0.15] 3.0	3.00
[0.50] <u>4.00</u>	9.00
0.001	0.045
[0.02] <u>10.0</u>	1.00
0.25	-]
0.015	·
5.00	-]
1.00	14.00
35.00	35.00
[0.3] =	0.49
[0.0001] <u>ND</u>	
10.0	10.00
350	350
500	500
	30-DAY AVERAGE (mg/l) 1.50 1.00 0.007 [0.15] 0.50 1.50 0.50 [0.15] 3.0 [0.50] 4.00 0.001 [0.02] 10.0 0.25 0.015 5.00 1.00 35.00 [0.3] = [0.0001] ND 10.0 350